Results & Products

SOLUTIONS searches for new and improved tools, models and methods to support decisions in environmental and water policies.

Results

SOLUTIONS searches for new and improved tools, models, and methods to support decisions in environmental and water policies. Therefore, the overall goal of the project is to produce consistent solutions for the large number of legacy, present and future chemicals posing a risk to European water bodies with respect to ecosystems and human health.

Researchers typically communicate via scientific papers and/or presentations. However, these dissemination pathways of scientific results and products often do neither address end-user requirements nor do they reach decision makers in management, regulation and industry.

SOLUTIONS purpose is to digest and condense the project outcomes (in terms of analytical tools, computational models, databases) into applicable guidelines and operational science-policy interfaces, as for example the so-termed piece of software RiBaTox (Web-based decision support system for River Basin specific Toxicants) to assist with the assessment, prioritisation and abatement of emerging pollutants.

analytical screening

MetFrag Web tool

MetFrag is a freely available software for the annotation of accurate tandem mass spectra of small molecules such as metabolites and substances of environmental interest. Annotation is a first and critical step for the identification of a molecular structure. Candidate molecules from various databases are fragmented in silico and matched against mass to charge values. A score calculated using the fragment peak matches indicates the quality of the candidate spectrum assignment. MetFrag, launched in 2010, was one of the first approaches combining compound database searching and fragmentation prediction for the identification of small molecules from tandem mass spectrometry data. Since then many new approaches have evolved, including MetFrag itself within SOLUTIONS. Ruttkies et al. 2016 details the latest developments to MetFrag and its use in small molecule identification since the original publication. A great benefit is the addition of different information sources, beyond in silico fragmentation, into the identification workflow, reducing user workloads and improving the structure elucidation process.

analytical screening

sampling tools

Passive sampling & LVSPE device

Passive sampling is a powerful tool that can conveniently be used for monitoring organic compounds in water and other environmental compartments. It has been designed to provide estimates of freely dissolved concentrations which have been shown to be in many cases most appropriate to explain exposure and adverse effects in biota. This downloadable SOLUTIONS internal deliverable provides a practical guidance on the use of passive samplers for monitoring organic pollutants in water. This guidance should assist users wishing to implement passive sampling methods in their research or monitoring work, but also more experienced users in the use of the available methods according to the state-of-the art. It addresses principles of passive sampling, sampler preparation, field deployment, laboratory processing, chemical analysis, calculation of aqueous concentrations and associated uncertainty considerations, as well as quality assurance. Practical examples of sampler operation and sample processing procedures developed and applied within SOLUTIONS are also provided. Additionally, SOLUTIONS pursues the successful implementation and application of sampling approaches for a more holistic monitoring of water quality. Schulze et al. 2017 presents a novel on-site large volume solid phase extraction LVSPE device tailored to fulfill the requirements for the successful effect-based and chemical screening of water resources.

sampling tools

effect-based tools

Effect-based tools

Water quality monitoring is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination. This conceptual paper by Altenburger et al. 2015 describes three routes to link the occurrence of chemical mixtures to the assessment of adverse biological effects. 1. Advanced multi-residue target and non-target screening techniques covering a broader range of chemicals co-occurring in the environment. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data can be used to characterize priority mixtures. 2. Bioanalytical tools explored to provide aggregate measures integrating all components that produce adverse outcomes even for mixtures of varying compositions. 3. EDA advanced to identify major drivers of mixture toxicity. These approaches are explored in studies at Danube and Rhine basins, and also in rivers of the Iberian Peninsula.

effect-based tools

effect-directed analysis

Effect-directed analysis

Aquatic environments are often contaminated with complex chemical mixtures that may pose risk to eco-systems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce such complexity and identify chemicals that might cause adverse effects on living organisms. Effect-directed analysis EDA meets this challenge and faces increasing interest in water quality monitoring. A new in-depth overview by Brack et al. 2016 summarizes current EDA experience providing practical advice on its application. EDA requires a combination of effect-based tools, specific cells or organisms detecting toxicity, and analytical tools to detect the chemicals present. SOLUTIONS develops approaches to simplify contaminant mixtures by removing those compounds that are not linked to effects. For individual samples this can be done by fractionation procedures separating groups of chemicals with similar properties, testing these fractions for toxicity, mutagenicity or endocrine disruption and removing the non-active ones. Only active fractions much less complex than the parent mixture are analysed for toxicants. SOLUTIONS developed several new tools to select and identify active chemicals in toxic and mutagenic fractions Gallampois et al. 2015 Hug et al. 2015 Krauss et al. 2015 If we have enough samples with effect and chemical data we can also use statistical tools to identify peaks in our chromatograms that always occur together with specific effects. This does not proof cause-effect relationships but suggests candidate compounds. In a proof of concept study SOLUTIONS demonstrated that this approach was able to strongly reduce complexity of mutagenic wastewater effluents and selected candidates with specific composition (nitrogen containing compounds) that was well in line with expectations on mutagenic compound groups such as aromatic amines Hug et al. 2015b

effect-directed analysis

chemical footprints

Chemical footprints

Freshwater environments are contaminated with complex mixtures of chemicals posing risks to ecosystems & human health. One core goal of the European Environmental Action plan 2020 is to reach a non-toxic environment. Chemical footprints represent the amount of water in a country or a city that is required to dilute all emissions to concentrations that do neither pose a risk to ecosystems nor to human health. Thus, chemical footprints as applied by Zijp et al. 2014 are a valuable tool to assess toxic impacts against safe boundaries for a specific regions and help to prioritize abatement options.

chemical footprints

Iberian basins

Iberian basins

Mediterranean rivers are different from Northern & Central European in terms of hydrological regime, climate conditions, socio-economics; all leading to differences in the nature and relative importance of existing environmental stressors. To identify the most relevant organic pollutants in this kind of scenarios, characterized by frequent water scarcity episodes and heavy human pressure, over 200 organic priority and emerging pollutants were comprehensively monitored in water, sediment and biota from 4 river basins and further prioritized on the basis of their occurrence, toxicity, and physical-chemical data. We provide a prioritization of contaminants relevant to Iberian rivers to support water authorities with respect to the set up of River Basin Management Plans.

Iberian basins

groundwater & bank filtrate

Groundwater & bank filtrate

River bank filtration RBF is a common technique for the pre-treatment of surface water for drinking water supply. During subsurface passage from the river towards extraction wells, undesired substances, such as pathogenic virus or contaminants shall be removed. While many river contaminants cannot be detected after bank filtration several emerging pollutants such as the pharmaceutical carbamazepine are fully persistent even after more than 3 years of transfer time. This study by Hamann et al. 2016 is one of very few reporting on the long-term field-scale behavior of organic micropollutants. It highlights the efficiency of RBF for water quality improvement as a pre-treatment step for drinking water production.

groundwater & bank filtrate

abatement options

Mitigation options for chemicals of emerging concern in surface waters

The water system provides fundamental services to society: industries, municipalities and agriculture withdraw, use and return water and demand water quality for intended purposes. As both water use and chemical emissions rise, increasing problems can be expected at the nexus of the chemical lifecycle and the water cycle. Currently, action on deterioration of water quality by chemicals is focused mostly on problem and risk analysis, while little attention is paid to mitigation options. Moreover, the intensification of current regulatory pathways presumably cannot yield a full solution to reach the policy goal of a non-toxic environment, so additional approaches seem warranted. This study by van Wezel et al. 2017 collates and evaluates mitigation options for chemical water quality improvement. These include mitigation options during the design, registration and authorization, production, use and waste phases, and ultimately technological interventions at the point of use, the point of environmental entry or at the point of a susceptible function of the water.

 

abatement options

Policy database

Chemicals covered by regulatory frameworks of relevance for WFD

Chemical pollution and reducing risks to human health and the environment are in focus in a large number of European regulations and directives, but also as multilateral environmental agreements. Diverse international pieces of legislation and regulatory frameworks cover different parts of the chemical life-cycle which can be represented by five categories: Raw material extraction; Production; Trade; Use and End-of-life. An improved coordination and cooperation between the different regulatory frameworks aimed at reducing chemical risks to the environment and human health, can as well lead to an improved implementation of the Water Framework Directive across Europe. SOLUTIONS has developed this freely available on-line tool/database for the search of chemicals that are listed in directives, conventions and international agreements, and other initiatives of relevance for the fulfillment of the goals established by the WFD.

Policy database

Products

SOLUTIONS searches for new and improved tools, models, and methods to support decisions in environmental and water policies. Therefore, the overall goal of the project is to produce consistent solutions for the large number of legacy, present and future chemicals posing a risk to European water bodies with respect to ecosystems and human health.

Researchers typically communicate via scientific papers and/or presentations. However, these dissemination pathways of scientific results and products often do neither address end-user requirements nor do they reach decision makers in management, regulation and industry.

SOLUTIONS purpose is to digest and condense the project outcomes (in terms of analytical tools, computational models, databases) into applicable guidelines and operational science-policy interfaces, as for example the so-termed piece of software RiBaTox (Web-based decision support system for River Basin specific Toxicants) to assist with the assessment, prioritisation and abatement of emerging pollutants.

future chemicals of concern

Future chemicals of concern

How does the availability and use of water resources, population demography, agriculture, health care, climate and so on affect the patterns of global chemical pollution? Is it possible – at least to a certain degree – to predict future emerging pollutants? This SOLUTIONS discussion paper documents the work and the results of identifying and examining patterns and trends in current chemical pollution. Following this initial analysis, SOLUTIONS scientists have worked with external experts in dedicated workshops to discuss health care, economic, technological and demographic trends in society, in order to identify links with new and emerging pollutants. Finally, the obtained outcomes have been summarized in this freely available working paper by Moritz et al. 2017

future chemicals of concern

Decision Support Tool for River Basin specific Toxicants

RiBaTox

RiBaTox is a tool which will support decisions in environmental and water policies on prioritization, risk assessment and abatement of emerging pollutants and their mixtures. The tool is being designed for EU-decision makers and their technical staff, as well as water managers, but will also be accessible to scientists, modelers and the public at large. It will provide access to the structured knowledge gathered in the SOLUTIONS project. The tool will bring the end-user as close as possible to the right model(s), tool(s), guideline(s) and/or database(s) and will leave the end-user in the hands of the competent institute to apply it in order to solve the end-users problem. Please find here the link to the preliminary test version. At this stage RiBaTox is under development and will be gradually upgraded in next future. Feedback from users on the current test version (concerning user-interface & content) is most welcome and can be addressed to Frank Sleeuwaert <frank.sleeuwaert@vito.be>

Decision Support Tool for River Basin specific Toxicants

Policy recommendations

SOLUTIONS & NORMAN recommendations towards the review of WFD

Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive WFD and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources, nevertheless its practical implementation with regard to chemical pollution has faced certain challenges. SOLUTIONS and the monitoring network NORMAN have joined efforts in identifying several present-day challenges for monitoring, prioritizing, assessing, and managing risks posed by chemicals, and in evaluating the state-of-the-art of the science concerning those issues. In this article SOLUTIONS & NORMAN provide 10 recommendations to be addressed during the WFD review and updating processes in order to: i. improve monitoring and strengthen comprehensive prioritization; ii. foster consistent assessment; and iii. support solution-oriented management of surface waters.

Policy recommendations

Publications